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FOREWORD

The Naval Surface Warfare Center Dahlgren Division INSWCDD) has a growing
responsibility for providing ways to accurately predict and detect targets. Information
processed through track filters is the heart of all major combat systems. Tracking and
estimation technologies are essential to the future of the United States Navy. Currently,
combat system functions such as, Command and Decision, Air Control and Combat
Systems Component Individual Error Checking, rely heavily on track processing data. In
the future, combat system functions such as, Common Command and Decision, Multi-
Platform Weapons Control, Common Air Picture and Mission Expansion, will rely on
track processing data.

This report has been reviewed at NSWCDD by A. Riedl, Head, Combat Systems
Technology Division (B30); and M. Kuchinski, Head, Digital Systems Branch (B32).

Approved by:

O At

CHRIS A. KALIVRETENOS, Head
Systems Research and Technology Department
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1 INTRODUCTION

The usage of tracking filters associated with a tracking radar dates back to work by Sklansky
[20]. He proposed measures of performance including stability, transient response, noise and
maneuver error as a function of the dynamic parameters o and 3. All of the work was based on a
frequency domain or z-transform analysis. Subsequent work by Benedict-Bordner [2] proposed
a relationship between o and 3 based on a pole-matching technique that combined transient
performance and noise reduction capability. Subsequent analysis was performed by Simpson
[19], Neal, and Benedict [18] for the a—B—1 filter. By this time, the Kalman filter was becoming
well known in the radar community. Thereafter, the tendency was to discuss the @ — 8 and
o — 3 — ~ filters as steady state solution to the Kalman filter. Subsequent papers by Friedland
[17], Fitzgerald [6], and Kalata [13] exploited this formal similarity to derive many results that
can be used to characterize tracking performance in a multi-tracking environment. The basis
for the analysis of performance used internally with the Aegis community is summarized in the
internal manual entitled “The Working Engineers Guide To o — 3 and a — 8 — -y Filters” by
Reifler and Solomon [23]. Later, much of this work was summarized in the open literature
by Kalata [22]. A summary of subsequent developments in the literature to 1992 is found in
Kalata [22] with some additional work since then found in Gray ([10}, [11]), as well as the open
literature. '

Contrary to the approach that is usually taken in the literature, we propose that the more
‘natural’ viewpoint is to introduce the constant gain filter and an entity that is independent
of the Kalman filter. One can derive the information that characterized the filter performance
without regard to the Kalman filter design criteria. One can then show how the performance
criteria generalize naturally to the Kalman filter or to a variation of the Kalman filter that re-
places the process noise with a bias reduction criteria. While variations on the filters discussed
are currently in use within naval systems, it is likely that they will be replaced with much more
advanced estimation techniques such as the interacting multiple model (IMM) filter. Exploring
the ability to bound filter performance is a necessary part of the redesign to replace existing
filters with advanced filter architectures. An IMM design that consists of several a —  and
a — 3 — = filters can be used to provide such a bound without the requirements of a detailed
system simulation [21]. Different architectures can be explored by this approach, so that tight
error bounds can be determined as part of an overall system performance. Subsequent imple-
mentation of a true IMM would then be used and known to have performance boundaries within
this boundary. We will take the results derived here and explore such issues in subsequent
reports.

The o — @ filter has found application when large numbers of objects are to be tracked. By
clever selection of the gains, and careful design, variable gain « — 3 filters combine sufficient
elements of the Kalman filter ([8],[1]) so that there is not significant tracking degradation. Thus,
there is useful information to be gained by a detailed performance characterization of the filter.

The tracking equations for the o — 3 filter consist of two parts: prediction equations, which
are given by _

1-1
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vp(k) = va(k - 1) (1-2)

and smoothing equations, which are given by
z5(k) = 2p(k) + a(@m(k) — zp(k)) (1-3)
0s(k) = vp(k) + 2 (zm(k) - 2,(8)) (14)

where

e z,(k) = smoothed position at the k-th interval

zp(k) = predicted position at the k-th interval

Zm(k) = measured position at the k-th interval

vs(k) = smoothed velocity at the k-th interval

vp(k) = predicted velocity at the k-th interval

e T = radar update interval or period

o, 3 = filter weighing coefficients

Alternatively, these equations can be written as

|Zs)), = Fp |Zs)g_1 + G pxm(K) (1-5)
where ( T
l—-a 11—«
Fﬁ—[ & 1.8 ] (1-6)
20), = [ o ] | (-7
Gp = | 2 ] (1-8)
T

These filter equations are one-dimensional, but can be extended to three dimensions by substi-

tuting successively y and z for z in Eq. (1-1) through Eq. (1-4). The filter equations are usually
analyzed in one dimension and the resulting analysis is usually extended to three dimensions -
with the assumption that similar results are given.

For the class of problems when this occurs, the filter can be viewed as a constant gain filter
which is nothing more than a matrix difference equation. This equation can then be solved
regardless of the measurement model provided the model is deterministic. The general solution
can then be used to compute the covariance matrix under very general assumptions about the
noise. This is an alternative and slightly more general to work done by Fitzgerald [6],[7], in the
early eighties. In this report, the general case will be solved first, and the a — g filter [2] will be

1-2
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solved as an illustrative example. Previously [9], the 2-transform or frequency domain method
was used, but here the direct methods that have become more fashionable in recent years will
be used. The solutions are independent of the particular relationship between a and 3 that are
discussed in {2] and [13].

In general, the update equations for a constant gain filter can be written as
Nnt1 = Fiip + ZnaG, (1-9)

where
Ny = nth vector state measurement,

F,G = filter update, gain matrices,
z, = scalar measurement model.

One would like to solve Eq. (1-9) under very general circumstances, which will be demonstrated
in the next section. This method would apply to any scalar measurement model.

1-3
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2 SOLUTIONS TO GENERALIZED FILTER EQUATIONS

In general, the update equations for a constant gain filter can be written as

M+l = an + $n+1G,

where,

th yector state measurement

Mo =1
F,G = filter update, gain matrices,
T, = scalar measurement model.

Hence, for n = 0, Eq. (2-1) has the form
m = Fng+ oG

For n =1, Eq. (2-1) has the form
My = Fny + 22G

Substituting the value of 7;, Eq. (2-2), into Eq. (2-3) gives

Ny = F(Fng+x1G) + z22G
= F2n0 + F21G + oG

For n = 2,
N3 = Fny +23G
Substituting the value of 75, Eq. (2-4), into Eq. (2-5) gives

Ny = F(F2770 + Fx,G + 22G) + z3G
= F3170 + F?22,G + Fz5G + 3G

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

(2-6)

and so on. Thus one has a basis for induction, and can then establish the following theorem:

Theorem: The general solution to Eq. (2-1) is

k
M = FFno + 3 F¥*"Gx,.

n=1

Proof: Use induction or substitution to verify the solution directly, as done above.

(2-7)

One can recognize that in the theorem the general solution is the combination of the homo-
geneous and inhomogeneous solutions. The homogeneous solution, found for z, equal to zero,

1S
772 =F k770-

(2-8)
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The inhomogeneous solution is

k
me =Y F* "Gz, (2-9)

n=1

To proceed further, the powers of the matrices need to be explicitly evaluated.

Let
f(X) = det[F — M, ' (2-10)

by the Caley-Hamilton theorem,
f(R)Y=0=v+7F+ ...+, F™ (2-11)

where m is the order of the matrix. Thus, any power & > m of a matrix can be written as

F* = yy(R)I + 71 (k)F + ... + Y (R)F™ = (F| |7()) (2-12)
where
I Yo(k)
F 71(k)
[Fy=1 . and_ Iv(k)) = - (2-13)
Fm . 'Ym.(k)

(note (A| = |A)* where ¢ denotes transpose.) Note the solution in Eq. (2-11) can be simplified by
expressing F* as in Eq.(2-12) provided one can evaluate sums of the form 3_,, 7(k)z,. Therefore
the solution is of the form

k
M= (F | v(B)) o+ Y_ (F | 7(k = n)) Gzn. (2-14)

n=1
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3 o« — [ Filter

The o — @3 filter has found application when large numbers of objects are to be tracked.
Thus, there is useful information to be gained by a detailed performance characterization of the
filter. The tracking equations for the oo — (3 filter consists of two parts: prediction equations,
which are given by

zp(k) = zs(k — 1) +vs(k — 1)T (3-1)
vp(k) = vs(k — 1) (3-2)
and smoothing equations, which are given by
z5(k) = zp(k) + a(zm(k) — zp(k)) (3-3)
(k) = vp(k) + 2 @m(k) - (k) (34)

where

e z,(k) = smoothed position at the k-th interval
e z,(k) = predicted position at the k-th interval

® z,,(k) = measured position at the k-th interval
e v(k) = smoothed velocity at the k-th interval

o v,(k) = predicted velocity at the k-th interval

e T = radar update interval or period

e o, = filter weighing coefficients
The filter gains, o and 3 satisfy the following relation
0<B<Laxl (3-5)

There are three commonly used relationships between a and 3. The first is the Kalata relation,
which is obtained from steady state Kalman filter theory assumlng zero mean white noise in
the pos1t10n and velocity state equations [13].

B=22-a)—4/1—-a (3-6)

The second is the Benedict-Bordner relation, which is derived based on good noise reduction
and good tracking through maneuvers.

a?

IBBB = 2 (3'7)

-




NSWCDD/TR-01/68

The third is the Continuous White Noise (CTWN) relation.

[ 2
o= 25—{—%—-'[22

Alternatively, Eq. (3-1) through Eq. (3-4) can be written as

|zs), = Hp |$p>k + Gpzm(k)

and
|$p>k+1 = Qp|zs)k
where

QB—[(l) ,{]
1-— 0
m= |
2H
T

Alternatively, Eq. (3-9) can be written as

|zs)x = Fls)_1 + G pzm (k)
where
l1—-a (1-a)T
Fﬂ=HB'Qﬁ=[ B (1—ﬂ) ]
T

The eigenvalues of Fj can be shown to satisfy the equation

fN=0=01-a-N1-F-X)+51-a),

which simplifies to

fO)=0=X+(a+B-2)A+(1-0q)

Let 7 = /1 — a and 2rcos(f) = 2 — o — (3, then
F(N) =0 = )2 = 2rcos(@)A + 2,

or

FO) =0=(\—re®)(\ —re7?9).

3-2

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

(3-19)

(3-20)

(3-21)
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Since Fp is a two by two matrix, it can be written as
F* = o (k) + 7, (k) Fp. (3-22)

The eigenvalues are _
Ay = ret?, (3-23)

Using the method in [5] for determining the power of a matrix gives two simultaneous equations
with two unknowns. Define

9N =70(k) + (k)X (3-24)
and
R()\) = XF. (3-25)
When h(Ag) = g(Xo), one gets
' rel® = yo(k) + 71 (k)re”, (3-26)
and when h(A;1) = g(A1), one gets
ke = (k) + yy (K)re™. (3-27)

Therefore, there exists two simultaneous equations to solve for the two eigenvalues to get the
coefficients. Solving these two equations give the result

—rk sin((k —
Yo(k) = S;?IEEZ) 1)9, (3-28)

and
%=1 sin(k8)

(k) = sin(6)

(3-29)

The general solution to the o — 3 filter equations consists of the homogeneous solutions and
inhomogeneous equations. As stated previously, the homogeneous solution is of the form

k= F*n, (3-30)
where
F* = o(k)I + 1 (k) F3, (3-31)
therefore
i = [Yo(k)I + 11(k) Fg] ne. (3-32)

By substituting the known values for 7, (k) and 7, (k), the homogeneous solution takes the form

h ~rksin((k —1)6)I = r* !sin(kf)F;
Nk = f T No-
sin(6) sin(6)

(3-33)
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Also, inhomogeneous solutions are of the form

k
=3 F*"2,G, (3-34)
n=1
where
F*" =y (k —n)I +v,(k — n)Fjs (3-35)
therefore
. k
Mo = > [k =) +,(k —n)FslzaGg, (3-36)
n=1
k-1
= Y [o(m) + 1, (m)Falzr-mGp.
m=0

Again, by substituting the known values for yy(k) and 7, (k), the inhomogeneous solution takes
the form

k-1
n = si1119 > [=r™sin((m — 1)0)I + 7™~ sin(m8) Fp)zk—mGp- (3-37)
m=0

One can further simplify the inhomogeneous solutions in Eq. (3-37) by using the trigonometric
identity

sin[(m — 1)8] = sin(m#) cos(#) — cos(mb) sin(8), (3-38)
therefore .
k-l —cos(8)- T+ I8
= [(( ° 211)1(9) S )'rm sin(m@) + (r™ cos(m8)) I) Tk-m | Gg- . (3-39)
m=0

Therefore the general solution, which is the summation of homogeneous and inhomogeneous
solutions gives '

ng = sinl(G) [(—rk sin((k — 1)9)) I+ (rk"l sin(ke)) Fﬁ] 7o (3-40)
k-1 :
+ mz=:o ([ﬁ’rm sin(mf) + (r™ cos(m#b)) I] xk_m> Ga,

where

A= —cos(0)I + % (3-41)
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3.1 CONSTANT MOTION MODEL

If one assumes that zx_., is a constant, say xo, then the general solution for the Constant
Motion Model becomes

ng 51@5 [(—rk sin((k — 1)9)) I+ (rk_l sin(kO)) Fﬁ] Mo (3-42)
k—
+ mzlo (S fig)r sin(m#@) + (r™ cos(mb)) I> z0Gg-

Examine only the inhomogeneous solution

) k-1

m=0

= [snﬁ9 Z r™ sin(m#@) + Z r™ cos(mb) ] zoGpg

S(r 6) +C(r, 0)1] 20G

where -
S(r,0) = z 7™ sin(m#) (3-44)
m=0
and
C(r,0) = Z r™ cos(mb). (3-45)
m=0

Substituting the values for S(r,6) and C(r,8) (found in Appendix A) into n}, reveals

; A_ (rsin(6) +r*+ sin((k ~ 1)6) — * Sin(ke)) (3-46)

Me = [sin(9) ( 1 — 2r cos(f) + r2

+ (1 — rcos(§) +rF+1 cos((k — 1)8) — ¥ COS(ke)) IzoGp

1 — 2r cos(6) + r2

The terms in the inhomogeneous solution, Eq. (3-46) that are independent of k

(Si Iﬁg) <r si2(9)> + (1 - ;os(e)> I) 2Gs (347)

Y
; ] , (3-48)

simplify to
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or
.’B()Ul, (3—49)
where
Uy = [ : ] . (3-50)
The inhomogeneous solution, Eq. (3-46), then becomes
i 1. A k41 oo k
m = zoUi + {ﬁ[sin(Q) (r sin((k —1)8) —r s1n(k0)) (3-51)

+ (rkH cos((k — 1)) — r* cos(k&)) IzoGg}.
Therefore, by substituting the simplified inhomogeneous solution Eq. (3-51) into Eq. (3-42),
the general solution for the Constant Motion Model is of the form

_ 1
M = sin(6)

(r*sin((k — 1)8)I + ¥~ sin(k8) F3)n, (3-52)

A
sin(6)

+Uhzo + {%[ (rk‘H sin((k — 1)8) — ¥ sin(k&))

+ (rk+1 cos((k — 1)) —r* cos(ke)) IzoGp}.

Note that for « close to one, the filter converges quickly to steady state. While for smaller ,
the filter converges very slowly to steady state.
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The figures listed below of the Constant Motion Model illustrate the convergence properties
of the filter.
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Figure 3.1-1. Constant Motion Model with a = .9
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Figure 3.1-2. Constant Motion Model with a = .5
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Figure 3.1-3. Constant Motion Model with o = .1

3.2 LINEAR MOTION MODEL

If one assumes that z,, is linear, then z,, can be written as, z4_,, = k — m. Thus, the
linear is separated into constant and linear terms. So one only needs to calculate the linear

term and then apply the results gained from the constant term discussed previously in Section
3.1 to get the complete solution.

me = g [(~rtsin(( = 06) T+ (7 sn(k6)) Fa) (353)

k—1
+ l:z (Er?(—e—).rm sin(m#@) + (r™ cos(m#8)) I ) m} Gp

m=0

Examine only the inhomogeneous solution

k-1 |
n = [Z (;—i—l%jrm sin(m@) + (r™ cos(m#)) I) m] Gg (3-54)

m=0
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A k-1
= [sm @ 2 Z mr™ sin(m#) +T§0 mr™cos(mb)) I| Gg
_ [S RO 9)1] Gs
where -
Si(r,0) = Z mr™ sin(mé) (3-55)
m=0
and ~
Ci(r,0) = Z mr™ cos(mb). (3-56)

m=0

Substituting the values for S1(r,8) and Cy(r,6) (found in Appendix A) into nj, reveals

o= [gSe0+G 1| G (3-57)
= ,B—Qéil—(é—)(ar sin(6) + ((2 — a)rcos() — 27‘2) IGg
+{ﬂ—zs—if1(—9) ((or+ EB)r*+ sin((k — 1)6) — (=~ B(1 — K))r* sin(kd) )
-&-i ((a + kB) r*¥*t cos((k — 1)6) — (oo — B(1 — k)) rk cos(k@))}Gg
The terms in the inhomogeneous solution, Eq. (3-57), that are independence of k
1—3-17 [ﬁ—e—jar sin(8) + ((2 — a)rcos(f) — 'r2) I] Gg, (3-58)
simplify to \ \
1 | &®B-af+af—aof
e g S
or
| [ il ] - (3-60)
T
Let
L= [ M ] : (3-61)
T

Therefore, by substituting the simplified inhomogeneous solution, Eq. (3-57) and the non-k
dependent inhomogeneous solution, Eq. (3-61) into the general solution, Eq. (3-53)

i o= L+ % ( gi;% (G + B+ sin((k — 1)6) — (= B(1 - K))r* sin(ke)) (3-62)
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+ (o + BE) 7+ cos((k — 1)6) — (@ — A(1 - k) r* cos(k6) ) }Gp.
Combine the constant, k, with the linear term.
Tk = k —m. (3-63)

Therefore, the Linear Motion Model solution is of the form

T = oo (9) —— (r®sin((k — 1)8)I + 1 sin(k8) F3)n, (3-64)

+(kI - L)

1

A k+1 s k .
4-{?[m (—ar**sin((k - 1)6) — (~a + B)r* sin(k6) )

+ ( +1cos((k — 1)) — (—a+ B)r* cos(kb) ) IzoGg}.

Note that for a close to one, the filter converges quickly to steady state. While for smaller o,
the filter converges very slowly to steady state.

3-10
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The figures listed below of the Linear Motion Model illustrate the convergence properties
of the filter.
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Figure 3.2-1. Linear Motion Model with o = .9
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Figure 3.2-2. Linear Motion Model with a = .5
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Figure 3.2-3. Linear Motion Model with a = .1

3.3 QUADRATIC MOTION MODEL

If one assumes that z,, is quadratic, then z,, can be written as zy_, = (k — m)? =
(k? — 2km +m?). Thus, the quadratic is separated into constant, linear, and quadratic terms.
So one only needs to calculate the quadratic term and then apply the results gained from the
constant and linear terms discussed previously to get the complete solution.

= 51% [(=r*sin((k — 1)6)) I + (*~" sin(k6) ) 3] no (3-65)

k-1
+ [Z (;—i%rm sin(m@) + (r™ cos(m#®)) I) m2} Gg

m=0

Consider only the inhomogeneous solution of Eq. (3-65),

k~1
n = {Z (sirﬁ 7 r™ sin(mf) + (r™ cos(mb)) I ) mzjl Gg (3-66)

m=0

3-12
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o4 kel k-1
= |—— Z r™sin(mf)m? + Z (r™ cos(m0))m2I} Gg

-Sin(e) m=0 m=0
o4 kol k-1
= Lsm(9 Z m?r™ sin(mé) —{—mX_IO (m r cos(m9)> I] Gg
[ A
= \_gin—(ﬁ—)_sz(r’ 8) + Ca(r, G)I] Gp
where -
Sa(r,0) = Z m2r™ sin(mf) (3-67)
m=0
and 1
Co(r,0) = > m2r™ cos(mf). (3-68)
m=0

Substituting the value of Sa(r,6) and Cs(r,0) (found in Appendix A) into nt, reveals

M = [——Shﬁ ) Sa(r,0) + Ca(r, 9)1] Gg (3-69)
B ,313 ( n(6 )(2a + af — 2B)rsin(6) — dar’I + (4o — 20” — af)r cos(f )I) Gp
A .
() (20 2B+ o 2+ PGt sin((k ~ 1)0)

—(202 — 28 — af3 + 208k + B* — 2k? + k?B2)rF sin(k6)}
+)—61§{(20¢2 — 28 + af + 208k + k*5%)rF+1 cos((k — 1)6)

—(202 - 28 — aff + 208k + B% — 2k3% + K*B2)r* cos(k6) }}Gs
The terms of the inhomogeneous solution, Eq. (3-69), that are independent of k

1
ﬂB
which simplify to

(s (@ )(2a + af — 2fB)rsin(f) — 4or?I + (40 — 202 — af)r cos(O)I) Gg, (3-70)

1 [ 28%a-1)
7 | 5o~ p) } ’ #n)

or —
2Aa1)
()
TR

(3-72)

3-13
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Let

=(20—8)
8

then the inhomogeneous solution, Eq. (3-69), becomes

2Ae=1)
M:{ 4 } (3-73)

: A
n, = M+ %{m{(%ﬁ — 28+ aB + 2afk + K262 r*sin((k — 1)§)  (3-74)
—(2a? — 28 — aff + 2aPk + 5% — 2k6? + k23?)rF sin(k6)}
+{(20® - 2B+ aff + 208k + k23%)r**1 cos((k — 1)6)

—(20% - 28 — aff + 208k + B2 — 2kB% + K2B%)rF cos(k6)} )G
Combine the constant, k%, and linear,—2km, terms with the quadratic term
T = k? — 2km + m2. (3-75)

Therefore, the Quadratic Motion Model solution is of the form

ng = -5-1?11(7) [(—rk sin((k — 1)9)) I+ (rk_l sin(kH)) Fﬁ] Mo (3-76)

+[(K*I — 2kL + M)

+i{L[(2a2 - 28+ a,B) rE+lsin((k — 1)6)
B3 ‘sin(8)

- (2a2 — 28— af+ %) r* sin(kd)]

+ (2a2 - 26+ a,B) r* cos((k — 1)0)1

- (2a2 -2B8-af+ ,62) % cos(k6)I}Gp

The terms in the general solution of the Quadratic Motion Model, Eq. (3-76) that are not
transient and dependent on m
k2T — 2kL + M (8-77)

(k2 [ (1) } —2k[ _0-;. } + [ _2—2%;3__(1 ) D ) (3-78)

3-14

simplify to
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or
{ k2 =2 (LE’E) } . (3-79)
%-2(3-3)
Recall
g = [ Zfs } , (3-80)
so one can define l—a A
lp= ( . ) (3-81)
where [, is the position lag in the response due to the acceleration input, and
Iy = (—Z— - %) (3-82)

where 1, is the velocity lag in the response due to the acceleration input [14]. The lags
mentioned above are graphed in Figure 3.3-1.

=

&

Lag Coefficients
8

ok
(]

-+

10

Figure 3.3-1. Steady-state position and velocity lags

Since 0 < r < 1, the terms 7F and r*+1 represent the exponential damping in the transient

3-15
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response. Therefore, the non-transient portion of the smoothed position solution is

a agl,T?
Tss = EOTW - 0—3—

and the non-transient portion of the smoothed velocity solution is

vss = agThk — 2a0l,T.

3-16

(3-83)

(3-84)




The figures listed below of the Quadratic Motion Model illustrate the convergence properties

of the filter.
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Figure 3.3-2. Quadratic Motion Model with o = .9
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Figure 3.3-3. Quadratic Motion Model with a = .5
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Figure 3.3-4. Quadratic Motion Model with o = .1

3.4 SINUSOIDAL MOTION MODEL

If one assumes that z,, is sinusoidal, then z,, can be written as, Tx_,, = cos(k — m), then
the general solution for the Sinusoidal Motion Model becomes

= gﬁl(—(); [(—'rk sin((k — 1)9)) I+ (Tk_l sin(kG)) Fg] Mo (3-85)

k—1
+ [Z (si_:@rm sin(m#) + (r™ cos(m8)) I ) cos(k — m)] Gp

m=0

Note that for a close to one, the filter converges quickly to steady state. While for smaller o,
the filter converges very slowly to steady state.

3-18
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| The figures listed below of the Sinusoidal Motion Model illustrate the convergence properties
| of the filter.
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Figure 3.4-2. Sinusoidal Motion Model with a = .5
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Figure 3.4-3. Sinusoidal Motion Model with o = .1
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4 a-— -+ FILTER

The tracking equations for the a — 3 — + filter consists of two parts: prediction equations,
which are given by

zp(k) =zs(k — 1) +vs(k — 1)T + -I;as(k -1) (4-1)
vp(k) = vs(k — 1) + Tas(k — 1) (4-2)
ap(k) = ay( — 1) (@3)

and smoothing equations, which are given by

zs(k) = zp(k) + o(@zm(k) — zp(k)) (4-4)
(k) = vp(K) + 5 (am () ~ zp(3) (4-5)
as(k) = ap(k) + 5 (@m(k) - 25(k)) (46)

where

o (k) = smoothed position at the k-th interval

o z,(k) = predicted position at the k-th interval

e z,,(k) = measured position at the k-th interval

e v5(k) = smoothed velocity at the k-th interval

e vp(k) = predicted velocity at the k-th interval

e as(k) = smoothed acceleration at the k-th interval
e a,(k) = predicted acceleration at the k-th interval
e T = radar update interval or period

e ,[3,v = filter weighing coefficients

For the a— -y, the commonly used relationship between o and 3 is the Kalata relationship
which is obtained from steady state Kalman filter theory assuming zero mean white noise in
the position and velocity state equations [13]. An additional relation between 7 and a — 3 is
needed. The most common is

_Z
" 2 (47)
which is known as the Neal-Simpson relation[13].
Alternatively, Eq. (4-1) through Eq. (4-6) can be written as

4-1
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and
lxp)k+1 = Qy @)y, (4-9)
where )
zs(k) ]
|Zs)e = | vs(k) (4-10)
| as(k) |
[ (k) |
lzp), = | vp(k) (4-11)
i ap(k) ]
17z |
Qy=|01 T (4-12)
0 0 1
1-a 00
H=| -£ 10 (4-13)
-7 01
o
Gy=| £ (4-14)
2
Alternatively, Eq. (4-8) can be written as
|Zs) i, = Fy |%s)g_1 + G 1Zm (k) (4-15)
where )
l-a (1-a)T (1-o)Z
Fy=H, Qy=|-£ 1-p (1-9r (4-16)
% - 1-3

while the G matrix is

G, = (4-17)

N R

The eigenvalues of F, can be shown to satisfy the equation (using the result in Eq. (4-16) and
expanding about the 33—minor)

FO)=0= A —ref®) (A —re ) (1 - % - )+ 7—2’\ (3»— B—a)+ (1——20‘)7- (4-18)
fO) =0= ()2 —2rcos(6) +r2)(1 — % - ) — 7—2)‘ (1+ 2rcos(8)) — il;ﬂ (4-19)

4-2



which simplifies to

FO) =0= 2+ X(-1+ % —2rcos(8)) + A(r? + % + 2r cos(8)) — 2
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O =0= 2= %+ A(b+r%—s%) -1

(4-20)

(4-21)

where v = 1—s? and (—5;— + % + 2r cos(O)) = b. Without loss of generality, one can assume that

Eq. (4-21) can be written as

) =

Equating Eq. (4-21) to Eq. (4-22) leads to three equations in three unknowns:

0
0

(}\ - tej‘p) ()\ - te_j‘p) (A—19q)

= (A2 —2thcos(p) +t2) (A —q).

2tcosp+q =

t2+2tqcosgozb+r2—s

qt? = r?

Eq. (4-23) and Eq. (4-25) have solutions

2tcosp =b—

while the Eq. (4-24) leads to the equation

b

2

q

6 — (b+r2—32)t4+br2t2—r4=0,

which is a cubic equation in t2. Making the substitution y = 2 — ﬁ"’%‘—ﬁ, reduces Eq.

to the fundamental form

where

v} +py+m=

0,

p= —% (b+r2—32)2+br2,

m=—2l7 (b+r2—sz)3-i—ézzE

Find u and v so that

and

3

3uv = p,

4-3

(b+r"Z - 32) -t

(4-22)

(4-23)

(4-24)
(4-25)

(4-26)

(4-27)

(4-28)
(4-28)

(4-29)

(4-30)

(4-31)

(4-32)

(4-33)
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By solving for u in Eq. (4-32) and substituting into Eq. (4-33), the result is given as

AN '
2) B = 4
( 31;) v =m (4-34)
which simplifies to ,
' 6 3_P A
_P o 5
v° +mu o 0 (4-35)

which by the quadratic formula, has the solution
4p3
g_m +4/m2+ %
5 .

To continue, one needs to find the value of u by substituting the value of v into Eq. (4-33)

v

(4-36)

5 —mt4/m2 4+
u =m+

MT
)
~

(4-37)

Hence, the value of y can be found by subtracting the values of u and v to give the following:

i]mi\/mz-f—‘—lg j—m:l:\/m2+5§
y= -

2 2

(4-38)

Therefore, the value of 2 can be found by substituting the value of y into y = ¢2 — —b—i—f;;sz

/ 4 / 45
tzzijmi 7’”‘2'*"297'_3 —mE m2+“2%+b+r2 — 52

5 \ 3 3

b

(4-39)

It follows that the values of ¢ and ¢ are now known.

Let h(A) = X¥ and g(X) = vo(k) + 71(k)X + 75 (k)A%. By equating h(X) and g()), one can
see that if

h(Xo) = g(Xo) (4-40)
then |
5 = o (k) + v, (k)te?? + v, (k)t2e%%, (4-41)
if |
h(A1) = g(A1) (442)
then
eI = yo(k) + 71 (k)te ™7 + vy, (k)t2e= 2%, (4-43)
and if
h(A2) = g(X2) (4+44)
then
¢* = vo(k) + 11 (k)g + 7o (k). (4-45)

4-4
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Hence, there exists three simultaneous equations to solve for the three eigenvalues to get the
coefficients|[5):

tEeTR? = (k) + 71 (k)te?® + 7o (k)t7e™?, (4-46)
the™IR = 3o (k) + 7, (k)te ¥ + 7o (k)tPe™ %, (4-47)
" and
g = o(k) + 71(k)g + 12(k)g*. (4-48)
Solving these equations, one obtains
70(k) = € (ot sin (k= 2)¢) = @t*sin (k= D) + ¢ Psin()),  (449)
71(k) = & (=t sin ((k — 2)p) + gt sin () + tsin(20)) (4-50)
and
Yo(k) = £ (#sin ((k — 1)) — gt**sin (k) + ¢ sin(v) ) , (4-51)
where 1
3 (4-52)

- sin(¢)[—2gt cos(p) + ¢% + t?]

The general solution to the a — 3 — + filter equations consists of the homogeneous solution
772 = Fkn07 (4'53)
where F* = vy (k)I + 71(k)Fy + y2(k)F2, hence
7l = [Yo(B)T + 1 (6)Fy +1a(K) S| mo. (4-54)

By substituting Eq. (4-49) through Eq. (4-52) into Eq. (4-54), the homogeneous solution can
be written as follows:

np = (et sin((k — 2)¢) — @t sin ((k — 1)) +¢*sin() ) 1 (4-55)
+ (—t’“"‘l sin ((k — 2)) + qt* L sin () + ¢*t sin(2cp)) F,

+ (tk sin ((k — 1)) — gt* L sin (kp) + ¢* sin(cp)) F,?}no.

Recall, the inhomogeneous solution is of the form

k
77?; = ZFk_nan'y, (4-56)
n=1
where
F*=" = o (k = n)I + 7,(k — n)Fy + 7(k — n)F; (4-57)

4-5
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hence,

k
ne = D [olk =)+ (k—n)Fy + 75k — n)F2]z,G (4-58)

n=1
k-1 _
= 3 (M) +v1(m)Fy + y5(m) F—m G-

m=0

By substituting Eq. (4-49) through Eq. (4-52) into Eq. (4-58), the inhomogeneous solutions
can be written as follows:

k—1 .
T = €3 {(@™ sin((m —2)¢) — t"sin (m— 1)¢) + q"sin(p)) T (459)

m=0

+ (—tm+1 sin ((m — 2)¢) + gt™ * sin (¢) + ¢™t sin(2cp)) F,

+ (tm sin ((m — 1)) — gt™ ! sin (my) + g™ sin(go)) F2} 2k mG,.

One can further simplify the inhomogeneous solutions in Eq. (4-59) by using the trigonometric
identities

sin[(m — 2)¢] = (cos?[¢] ~ sin®[¢7]) sin[myp] — (2sin[i] cos[p]) cos[m] (4-60)
and
sin[(m — 1)¢] = sin(me) cos(p) — cos(myp) sin(¢p), (4-61)
therefore -
nk =Y [(Bt™sin(m8) + (Dt™ cos(mh)) + E) Zx_m) G, (4-62)
m=0
where :
B = —q(qcos(y] — tcos[2¢])] — t cos|2¢] Fy + t(—q + t cos[g]) F2, (4-63)
D = sin(p]{q(q — 2t cos[y])I + 2t cos[p]Fy — F,f}, (4-64)
and ‘
E = sin[p]{g™t*I + qt™ *(—1 + 2qt cos|y]) F, + qmF,f}. (4-65)

Therefore, the combination of homogeneous, Eq. (4-55), and inhomogeneous, Eq. (4-62),
solutions lends the general solution in the following form:

me = {{(at""sin((k ~ 2)p) — ¢t sin (k- 1)g) + sin(e)) I (466)
+ (—tk"'l sin ((k — 2)p) + qt* L sin (@) + ¢kt sin(2<p)) E,

+ (t"“ sin ((k — 1)) — gt*~ ! sin (ky) + ¢ sin(cp)) F2}nq

4-6
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k—1
+ Z [((Bt™ sin(mep) + (Dt™ cos(mep)) + E) Tk—_m] G-

m=0

4.1 CONSTANT ACCELERATION MOTION MODEL

If one assumes that z,, = xzg +vom + %aomQ, then the general solution for the Constant
Acceleration Motion Model is of the form

me = €{{(qt* sin ((k ~ 2)p) ~ 't sin ((k ~ 1)) + ¢ sinp)) 1 (467)
+ (—tk+1 sin ((k — 2)¢) + gt* 1 sin (¢) + ¢*t sin(2g0)) F,

+ (tk sin ((k — 1)) — gt* 1 sin (k) + ¢* sin(tp)) F2Yn,

k-1

+mz=:0 [((Btm sin(mep) + (Dt™ cos(mp)) + E) (mo +vom + %a()m?)] Gg.
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The figures listed below of the Constant Motion Model illustrate the convergence properties
of the filter. Note that for a close to one, the filter converges quickly to steady state. While
for smaller a, the filter converges very slowly to steady state.
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Figure 4.1-1. Constant Acceleration Motion Model with o = .9
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Figure 4.1-2. Constant Acceleration Motion Model with o = .5
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Figure 4.1-3. Constant Acceleration Motion Model with @ = .1

4.2 JERK MOTION MODEL

If one assumes that z,, = ﬂmT?:’—f, then the general solution for the Jerk Motion Model

becomes

e = &{(qt** sin ((k — 2)¢) — ¢*t*sin ((k — 1)) + ¢ sin(p)) I
+ (—tk‘H sin ((k — 2)p) + gt*1sin (p) + qkt_sin(2go)_) E,

+ (tk sin ((k — 1)) — gt** sin (kp) + q* sin(go)) F,?}no
k-1
3!

m=0

Consider only the inhomogeneous solution of Eq. (4-68),

_ k-1 . yom®T?
n = E,nX::o {((Bt"? sin(mep) + (Dt™ cos(meyp)) + E) ( 31 )] Gp

4-9

+> [((Btm sin(mep) + (Dt™ cos(myp)) + E) (M)} Gg.

(4-68)

(4-69)
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3 k-1
= ,5_2(()31 z—:o ((Bm3tm sin(mep) + (Dm3tm cos(mcp)) + Em3) Gg,
T3 k—1
= éy% ((353(t7 ¢) + (DCs(t, @) + > Em3> Gp
m=0
where
3(t, ) = Z m3t™ sin(me), (4-70)
m=0
Cs(t,p) = Z m3t™ cos(mep), (4-71)
m=0
= —q(gcosp] — t cos[2¢])I — t cos[2p] Fy +t(—q + t cos[go])F,?, (4-72)
D = sinfp]{q(q — 2t cos[¢])I + 2t cos[p| Fy, — F2}, (4-73)
and
E = sin[p|{q™*I + qt™ (~1 + 2qt cos[y]) F, + q"‘F,?}. (4-74)

By evaluating S3(t,¢) and Cs(t,¢), as done in Appendix A, and considering only the terms
independent of m. The terms independent of m in the inhomogeneous solution simplify to

(1-o)T
L_z_ul_“‘g%l 72 (4-75)
($+3)T
Recall
nt=1| v |, (4-76)

which implies
(4-77)

where [, is the position lag,

(4-78)

where [, is the velocity lag, and
Q:(g+~>T (4-79)

where [, is the acceleration lag.

4-10
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The figures listed below of the Jerk Motion Model illustrate the convergence properties of
the filter. Note that for o close to one, the filter converges quickly to steady state. While for
smaller o, the filter converges very slowly to steady state.

Position(m)
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70

60 L

&

&

8

8

70

10

—&— Swoth
-<-- Predicted ]
T
P E\mjm //
/
/
//
,6
/9/
- —-V/
—r = === - 0" -
1 2 3 4 5 6 7
Time(Sec)
Figure 4.2-1. Jerk Motion Model with o = .9
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Figure 4.2-2. Jerk Motion Model with a = .5
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Time(Sec)

Figure 4.2-3. Jerk Motion Model with a = .1

4.3 SINUSOIDAL MOTION MODEL

If one assumes that z, = sin(mT’), then the general solution for the Sinusoidal Motion

Model becomes

Tk

E{{(a"* sin (b = 2)9) — ¢*#* sin (b ~ 1)) + ¢*#*sin()) T
+ (—t’“+1 sin ((k — 2)¢) + qt*~1sin (p) + ¢*t sin(2go)) F,

+ (t’c sin ((k — 1)) — gt* ! sin (ky) + ¢* sin(cp)) Ff}no

k-1

+ Y [((Bt™ sin(mep) + (D™ cos(myp)) + E) (sin(mT))] Gp.

m=0

412
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The figures listed below of the Sinusoidal Motion Model illustrate the convergence properties
of the filter. Note that for a close to one, the filter converges quickly to steady state. While
for smaller o, the filter converges very slowly to steady state.
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Figure 4.3-1. Sinusoidal Motion Model with oo = .9
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Figure 4.3-2. Sinusoidal Motion Model with o = .5
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Figure 4.3-3. Sinusoidal Motion Model with o = .1
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5 NOISE REDUCTION RATIOS

Recall that one can express the update equations for a constant gain filter in the following
form

Nes1 = Fng + Tk G, (5-1)

where E(z,) = 0 and independent of 7. The covariance matrix of a first order system is
defined as [15] (where t denotes transpose)

P, = E{(m — E(ne))(ne = E(ni))'} (5-2)

= B{(ng — k) (n — )",
where E(n;.) = iy = Fijx_;. One can calculate P; by substituting Eq. (5-1) into Eq. (5-2)

Be = B{(Fngy+eG = Filpy) (Fioy + 3G = Filpa)'} (5-3)

= E{Fn_imi_F' + 5;GG"}.

The expected value is explicitly given as

\ oo

P = S {Fnp_1mpF' + 23,,GGY} (5-4)
k=0

F (Z 77k—-1”ﬁc—1> F'+ <Z x%+1> GG'

k=0 k=0
= FPR_ F'+02GG
where E(Znz,) = 02. In steady state (Px = Px—1 = P), so the covariance is in the form of a

Lyapunov matrix equation :
FPF'— P = -02GG", (5-5)

Define a matrix S such that
PFt—FP=S (5-6)

By adding Eq. (5-5) and Eq. (5-6), one can solve for P explicitly in terms of known quantities
to give

FPF'— P+ PF'—FP=S-0iGG" (5-7)
(F+I)P(F* —I)= S — 02GG* (5-8)
P=(F+I)~YS-d2GG")(F'-I)! (5-9)

We now have an expression of P. To solve for S, we pre-multiply Eq. (5-6) by F and post-
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multiply Eq. (5-6) by F* which gives
FP(F')’ - (F)* PF* = FSF* (5-10)
then substituting from Eq. (5-5)
FPF'= P — g2GG" (5-11)
into Eq. (5-10) gives the solution for S
FSF'— 8§ = Fo2GG" — 02GGF? (5-12)

One can then solve this equation for S and then substitute S into Eq. (5-9) to get the value of
P.

5.1 NOISE REDUCTION RATIOS FOR THE « — 3 FILTER

For the a — S filter, recall

Fp = l l—ﬁa 1-a)T ] ' (5-13)

and
s } . (5-14)
T

By substituting Fj3 and Gg into Eq. (5-12)

FpSFh - 8 = (FsGsGl — GaGhF}) o (5-15)
FpsFy—S=o2| 0, F 16
B B - Un _:82 0 (5— )
Solving for S, yields '
. 1 0 ﬂS
S=— 5-17
where
fp=—ap (5-18)
One can now solve for P by substituting S into Eq. (5-9)
P = (Fg+I)"Y(S—02GsGh)(Fp—I)? (5-19)
2 =T(-a) o2 _B(y.B 11
= i2a-—F A-2a-P @ T(O‘j‘ a) ] [ T }
= “o ~T(l—a) =
T(4—ga—ﬁ) 4—22aa—ﬁ } [ ”g‘(a - g) _‘BT B = v

5-2
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—202+B(3a—2) —B(2e—B)
— a(—4+2a+B)  oT(—4+2c+p)
- —B(2a—p) —2p2

ol (—4+2c+B) oT?(—4+20+0)

The elements of this covariance matrix reveal the noise reduction ratios for position (Py),
velocity (P,), and position x velocity(Pzwv)-

202 + (30 — 2)

P.(0) = -
(©) a(-4+2a+p8) (5-20)
-2
F(0)= T (=4 + 20+ B)’ (5-21)
- 820 - )
— a —
P (0) = aT(—4+2a+6) (5-22)
5.2 NOISE REDUCTION RATIOS FOR THE « — 8 — v FILTER
For the o — 3 — y filter, recall
l-a 1-a)T (1—a)l;
Fy=|-& 1-3 (1 - g) T (5-23)
% F 1-3
and
a
Gy=| % (5-24)
e
By substituting F), and G, into Eq. (5-12)
E,SF% - 8 = (F,G,G, — G, G4 F3 ) o (5-25)
0 2ﬁ2—2;<;1ﬁ+ﬁ'y 7(22?2%-'7)
F,SFi - § =02 | =2£%4208-p 0 ke (5-26)
—’Y§2ZB+'Y). _%5 0
Solving for S, yields
. 0 -1 Fr-% 0 v 0
S=+ i - 0 v8+%L |+| - 00 (5-27)
Tl E-8 8-% 0 0 00
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such that 1 .
fr =1~ 507~ af (5-28)
One can solve for P by substituting S into Eq. (5-9)

P = (Fy+ID)"Y(S-02G,G)(FL -1 (5-29)

) 2ah — *(60 — 4) + oBy ﬁ(2a—@(2ﬂ~v) (2vh+ﬁT'12('y—2ﬁ))
= = B(2a=5)(26=) (CP-o)+46°(6=7))  261(28=)

h(4 —2a - () r _ T3,
2wh+ﬁr}vg'v 28) 237!%6 ) Q%L
where
h=2aB+ ay— 2y (5-30)
since 4
_LS—zéa—ZB -2T(1 - a) 0 .
-1 __ —X 4—20—32 —2T+To+ .
(£ Y+ = s—T4a—T2ﬁ s-m-zjﬂ T ’ (5-31)
2y o7 4-2q—
T2(8—4a—2B) T(8—4a—2p) 8—d0—20
—a? —oB 4 gi2’+Py? oy (20-F)y(264y)
2 t o g+2ay2+B72 T 2 2P _ 72§22£+'y)
5" UnGvG’y N ol 2 2h2 5 28 _r:’%l Tk  (5-32)
_%’]ﬁ + Lﬂzhéﬂl :T%l + %’ﬁ _:TLI
where
9= —46% + 4oy — 4%, (5-33)
and
h=2aB+ ay—2y (5-34)
and ' .
P R
(Ff-D7'= -3 T (5-35)
K _T?-T3¢ _Ta=ZL _p
¥ v v

The elements of this covariance matrix reveal the noise reduction ratios for position (P;),
velocity (Py), acceleration (F,), position x velocity (Pyy), and velocity x acceleration (P,q)

(Za(2aﬂ +ay — 27) - B%(6a — 4) + aﬂ'y> o2
F(0) = (208 + ay - 27)(4 — 2a — ) ’ (5-36)
—(20*(2— ) +48%(B = 7))o2
R (0) = T%2(208 + ay — 2v)(4 — 20 — B)’ (5-37)
(208 + ay — 2y) — B (6a — afy) o2
Po(0) = (2 (208 + ay — 27) — B*(6a — 4) + [37) n (5-38)

(2af + ay — 2v)(4 — 20— ) ’

5-4
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4By%02

Fel0) = Tigap oy -2 d—2a = 5)’

(5-39)

and

26+(28 — 7)o (5-40)

Pyo(0) = T3(2aﬂ +ay—2v)(4 - 20— () )
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6 COST FUNCTIONS AS ALTERNATIVE TO TRACKING INDEX

Independent of which of the three relationships between o and 3 one assumes, each rela-
tionship can be shown to obey the common constraint due to Kalata [13]

F2 — ﬁ2

11—«

(6-1)

where the variable T is commonly. known in the naval community as the Kalata tracking index,

4 2
FZZTUG
5 -
Om

(6-2)

The tracking index is a function of the assumed target maneuverability variance o2 (deviation
from modeled behavior), radar measurement noise variance o2, and T is the update interval.
The maneuverability is an unknown parameter in most cases because there is no direct means
of determining it from system parameters, nor is it measurable. One invents a process noise
model that is considered the best means of modeling unknown threat behavior. The variance
in maneuverability is o2.

There are alternative means of selecting the values for the filter coefficients than the tracking
index. This method is based on the fact that any unmodeled error in a filter introduces a bias
which is characteristic of the filter response. A cost function that combines noise reduction and
bias is introduced and minimized with respect to the « if used in the filter equations (one has,
of course, reduced 8 to 3 = B(a)). This methodology amounts to accepting a mean squared
error as the arbitrator of performance characterization. One could adapt other criteria as well
[24], but mean square is widely accepted.

The response of an o — 3 filter to a linear acceleration produces three terms; a transient
term, a lag, and the model input term. The lag is a bias, so the expected value E of the steady
state response E[zs(k) — m(k)] is the lag. Similarly,

‘ 1
E{(zs(k) = 2m(K))?] = Pz(0)or + 5 Lza3T (6-3)
and
B|(vs(k) — &m(K))?] = Po(0)0% + LyagT". (6-4)
This allows one to define a specific cost function [23] for the smoothed velocity
Jv(@,B8) = El(vs(k) = zm(k))’] (6-5)
= 2P, (0) + (3 - 1)2 272
- ntv ﬁ 2 ao .

where the terms have been previously defined. By introducing a change of variable

T= %, (6-6)

6-1
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one can cast the second term of the cost function that is invariant with respect to the relationship
chosen between a and 3. The velocity noise reduction ratio can be written as

—262
RO = ECireTp &)
-2
FT%(~4+2a + )

26
TT2(4 — 287 — B)

[

which can be cast purely in terms of 7 once the relationship between o and 3 is made. Therefore,
the specific cost function for smooth velocity is of the form

Jv(a,B) = 02P,(0)+ (r - -;—)2a§T2 (6-8)

o (=g * (-3) 4

For the Benedict-Bordner relation Bgp = E%’ substituted into 7 = 3 gives

2
B — 6-9
(T+1) (6-9)
and 5
B
=" 1
b T(T+1) (6-10)
‘When one uses the Benedict-Bordner filter relation, one finds the velocity noise reduction ratio
28
PE = 11
v T7T2(4 — 237 — B) (6-11)
2
TT?(272 - 1)
For the Kalata relation 8 = 2(2 — a) — 4y/1 — «, substituted into 7 = 3 gives
8
K = —7-2' (6—12)
(27 +1)
and 8
K
= ; 6-13
g (2r +1)° (613)
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When one uses the Kalata filter relation, one finds the velocity noise reduction ratio

K _ 25
Foo= TT2(4 — 287 — B) (6-14)
4

TT2(472 - 1)

For the CTWN relation o = /28 + iL; - [22, substituted into 7 = % gives

127
i — 6-15
@ (672 + 67 + 1) (6-15)

d
an 19
(672 +67+1)
When one uses the CTWN filter relation, one finds the velocity noise reduction ratio
2p
C
= 1

Fy TT2(4 — 287 - B) (6-17)
3
712 (312 —-1)

6 = (6-16)

In general, when one uses the different filter relationships, one finds the velocity noise
reduction ratio (T=1)

4
7(dr% - 1)

where d = 2 for Benedict-Bordner, d = 4 for Kalata, and d = 3, for CWTN. Eq. (6-8) can now
be written as a normalized cost function (e.g. ﬁ‘gfl J)

P§ = (6-18)

d

2
Jd(T,AR)=m+I‘2R (T—%) (6—19)

where I'g = —9— Note that ' has been rewritten with a subscript to avoid confusion with the
Kalata trackmg index which has the same physical units but a different interpretation. There are
a couple of interesting things to note about the cost function. First, the bias has been reduced
to a form that is invariant with respect to the relationship between the filter coefficients. This
means that one can minimize the cost function to arrive at 7 = 7(I'), hence one can arrive at
a selection criteria that has an absolute invariance with respect to lag. Additionally, one can
maintain the measure of performance; namely that the filter coefficient are minimized jointly
between velocity noise reduction and “velocity lag”. This leads to different performance than
the Kalata criteria for selecting the filter coefficients which is based on a plant noise model as
a means of selecting the filter coefficients.

6-3
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To compare the performance of different coefficient selection techniques, one can first show
how to compute the coefficients. Taking the derivative of Eq. (6-19) with respect to 7 and
setting it equal to zero gives

= d(Bdr’-1)
2(dr2 —1)2 (21 - 1)

This can be solved numerically or graphically to give 7 = 7 (I'g) which solves the filter selection
coefficient problem. Substituting Eq. (6-20) into Eq. (6-19) gives

(6-20)

d d(3dr? —1) ('r - %)
a mized) = , 21
J (Toptzm zed) - (de — 1) + 9,2 (d’/"2 _ 1)2 (6' )
which is cost function evaluated at the optimized value of 7. The tracking index is
4
= -22
7-2 (7-2 - 1) (6 )
for the Benedicf-Bordner relationship
64
2 _
T 1674 —872—1 (6-23)
for the Kalata relationship, .
14
= -2
3674 — 2472 +1 (6-24)

for the CTWN relationship. To make a comparison, one would substitute each one of these
equations into Eq. (6-19) and compare the plot for all 7.
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Figure 6.1-3. CTWN Relation

The relationship between a and T is expressed in the following figure.
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Figure 6.1-4. Relation between a and 7.
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For a given T, one sees that the Kalata relation gives the smallest o for a given 7.
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Figure 6.1-5. Isolated Comparison Between « and 7

The result of this comparison is that one will have smaller cost for the optimization technique,
which is indicative of better performance. Note, this performance improvement occurs when
there is unmodeled behavior only, so this result is useful in a complex target environment, but
not necessarily in a benign threat environment.

Different cost functions can be used for problems other than the ones already discussed
might prove useful under some circumstances. If there is concern about transient effects that
occur while the target is accelerating, replacing the lags by twice their value includes this effect
since the transient response is always less than or equal to the lag. Another possibility is
to weight the lag by the percentage of time maneuvers are expected to occur. In some cases,
it is more desirable to minimize the lag in for the predicted filter response rather than the
acceleration lag. If minimum mean square in position is the primary design criteria (say as
might be used in track maintenance), then applying the same analysis for the position cost
function is appropriate. Furthermore, exactly the same type of cost function approach can be
applied to the a — 3 — v filter. Further discussion of the details of this will be presented in
a future report which will concentrate on combining these results with a track maintenance
implementation of a multiple model a — 3/a — B — v filter that will be used to illustrate
how to bound IMM performance in a manner useful to Naval applications. The next section
illustrates how the cost-function technique can be used in an implementation of a table-driven
filter implementation.
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6.1 DESIGN EXAMPLES

To illustrate that, with proper initialization of the radar track data, the a — 3 filter can
be implemented as a look-up table of the coefficients as a function of range achieves similar
performance as a Kalman filter. Unless one is tracking only a few objects, the o — 3 filter
implementation of the Kalman filter could be preferred over the conventional Kalman filter for
real-time AAW applications. It does require some care in the design in terms of understanding
the operating environment as well as careful thought in the underlying design concepts. With
that understanding, one can consider several specific examples. When tracking is done in
Cartesian coordinates, the noise is range dependent. Typically, the noise can be written as
0z = Rog, where oy is the sensor angular noise, which is a known parameter of the tracking
system. Given that the range is in kilometers and the angle noise is in milliradians, the noise
can be written as a function of the range (n) times a constant k. The tracking index

2
r= “ZZ; . (6-25)

Specific system parameters are then plugged into Eq. (6-25) and the o’s are computed. For
example, commercial aircrafts do not have maneuvers that exceed 2¢’s. For simplicity, choose
other system parameters so that the tracking index is T" = %Q. Table 6.1.1 shows the two
different o/ s computed from the common tracking index for ranges from 4 — 128 km.

Range(n) | T | ax | PX(0) | PE(0) | JX(7,1) | ar | PFO) | PFQ) | IR(r,T)
4 44 | 61 .52 .10 .65 71 .46 12 .38
8 22 | 48 .40 .04 .35 .61 .51 .10 .23
16 A1 | .37 .30 .01 .19 52 .38 .04 .10
32 .06 | .28 22 .005 .10 43 .28 .01 .04
64 03 .21 .16 .002 .05 .35 .20 .006 019
128 014 | .15 12 .001 .03 28 .15 .002 .008

Table 6.1-1. Cost Function versus Range

Two other examples of interest to the tracking community can be mapped into the same
form as the accelerating target with different interpretations of the coefficients used to form the
tracking index. A maneuvering target that has a turning rate of less than 15° deg/sec has an
acceleration that is equivalent to a constant acceleration so the constant in the tracking index
can be represented by pyw? where w is the turning rate and pPo is the radius of curvature of the
turn. The noise is now angular ¢, = Royp and to a 98% confidence level, a becomes 30gR/T.
Thus, this example is completely mapped into the solution in Eq. (6-25) with

r - pow’T?
™™ 3Rop

(6-26)

Another example is to determine the ballistic coefficient of an object. The force on an object
undergoing a ballistic slowdown is F = %pka. This force produces an equivalent acceleration

6-8
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k 2
term ag = p%gL, which can be used to give the tracking index
0

pk?T?
== 6-27
™ 3m2v2Rog (6-27)
These examples illustrate the usefulness of this approach in that there is a great deal of
flexibility to attack different problems, that can all be mapped into the same tracking index
with a different definitions of its parameters.
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7 DETERMINATION OF FILTER COEFFICIENTS

The selection of the relationship between a and 8 remains somewhat problematic in the
discussion of filters. Because of the close connection between the steady state solution of the
Kalman filter and the constant gain a — 3 filter, there has been no independent development
of the coefficient relations other than the Benedict-Bordner relationship. This can be rectified
as show below, but it remains largely an academic exercise for many. Thus it may be skipped
by those who are uninterested without serious loss of continuity with the previous portions of
the document. _

Recall that cost functions in the previous chapter are used to determine « in terms of known
system and design parameters. This cost function approach can also be used to determine filter
coefficient relationships 3 = B (c). Recall from optimization theory [?], that for a function of
two variables, say z and ¥, it is possible to minimize this function so that a minimum exists with
respect to some objective criteria. Once the relevant equations are solved, a single functional
relationship ¥ = y(z) is achieved that satisfies the minimization criteria. To illustrate how to
do this, note that a cost function J is minimized by taking the gradient and taking the inner
product with a vector normal to that function

VJ-i=0. (7-1)
To illustrate this, consider the fortuitous choice of a cost function

f(z,y)
h(z,y)

Taking the directional derivative of J(z,y) with respect to x and y respectively, gives the matrix
equation (with the normal vector corresponding to the matrix of parameters a and b)

foh—Fhs g a
h?(z,y) z { ] =0 (7-3)
h—fh =V
[ G S } b

)

J(z,y)=a + bg(z,y). (7-2)

Clearly this equation is satisfied only if the determinant is zero, which gives

gy(fzh — fhs) — gz(fyh - fhy) =0. (7'4)

Solving this then implies y = y(z), which is equivalent to a filter coefficient relationship.
There are four obvious choices for the cost function. We have already discussed two. Recall
that the noise reduction ratio for the smoothed velocity is

_ 2]32 .
BO) = maa—2a-p) (7-5)

23
T27(4 - 2716 - B)
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so a velocity-lag-noise-reduction cost function is

WT;j'—,BTﬁ—) +b(r — -;—)2 ' (7-6)

Recall that the noise reduction ratio for the smoothed position is given by

INLy =a

2a% + B(2 - 3a)

P:(0)

a4 —2a - )
267% + (2 - 370)
7(4 =278 - B) (7-7)
so a position-lag-noise-reduction cost function is
2 _ —+R3\2
Tnip = a2ﬂ7’ +(2-318) +b(1 T8) - (7-8)

Td-2r8-8) . B

Two other choices for cost functions date back to Benedict [2]. The transient velocity perfor-
mance of an a — 3 is

1a%2-0)+26(1—0)

Do = T oBG-2a-p) 9)
1 Br?(2—pr) +2(1 - Br)
T2 Br(4—278 - B)
so a transient-velocity-noise-reduction cost function is
_ B Br*(2 — Br) +2(1 — Br)
W= g T Bra-2B-B) (10
The transient position performance of an a — 3 is
2-a)(1-0a)
Dp af(4—-20-0) (-11)

(2—pr)(1 - pr)?
T4 (4~ 267 - B)

so a transient-position-noise-reduction cost function is (which is the criteria used by Benedict
to derive the BB relationship, though he used a somewhat convoluted z-transform technique)

2674 (2=37) (2 pr)(1 - Br)?
‘T(4-216-0) T8%(4 - 281 - B)’

INTp = (7-12)
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7.1 VELOCITY-LAG-NOISE-REDUCTION COST FUNCTION

To determine which different coefficient relationship are achieved, first consider the velocity-
lag-noise-reduction cost function, Jyr,. Note (from now on there is the mapping z = 7 and

y = p)

f(r.8) =5, (7-13)
which implies
fr(7,8) =0, (7-14)
and
fa(t,8)=1. (7-15)
Also, \
9(1,B) = ( - %) ; (7-16)
which implies ‘
9-(1,B8) = (21 - 1), | (7-17)
and
gs(1,B) =0. (7-18)
Finally, note '
h(r,B) = 7(4 - 278 - B); - (719)
which implies
he(7,8) = (4= 478 - ), (7-20)
and
hg(r,B) = -2+ 1)T (7-21)
Additionally,
(frh = fhy) = B(—4 + 478+ ) (7-22)
‘and
(fgh — fhg) = 47 (7-23)

are needed. Substituting Eq. (7-17), Eq. (7-18), Eq. (7-22), and Eq. (7-23) into Eq. (7-4),
gives : ' '
4 — 872 =0

which implies that there is no optimal relationship between the coefficients for this cost function.
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7.2 POSITION-LAG-NOISE-REDUCTION COST FUNCTION

To determine which different coefficient relationship are achieved, first consider the position-
lag-noise-reduction cost function, Jyr,; note that

f(r,8) =26r% + (2 - 37), (7-24)
which implies
f+(7,B) = 4T — 30, (7-25)
and
| fp(,8) = (2% - 37). (7-26)
Also, ,
otr.8) =S5 (r-27)
which implies
gr(r,0) = 2T, (7-28)
and 2r(1—Br) 21 —p1)?  —287+26%r2 — 2(1 — Br)?
gﬂ(T7 B)=-— 5 - 3 = 3 . (7-29)
. B B B
Additionally, '
(frh — fhr) = —2(4 +46°7° — B(1 + 27)°) (7-30)
and
(fsh — fhg) = 2r(1 — 27)? (7-31)

are needed. Substituting Eq. (7-28), Eq. (7-29), Eq. (7-30), and Eq. (7-31) into Eq. (7-4),
gives
A1+ B3 (—4+B+46T2)

7 0. (7-32)
Therefore,
4
p= 144712 (7-33)
and 4'
r
| “=Tya (r-34)
This gives a relationship beteen o and S,
B=2-2V1-a2. (7-35)

7-4
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7.3 TRANSIENT-POSITION-NOISE-REDUCTION COST FUNCTION

To determine which different coefficient relationship are achieved, first consider the transient-
position-noise-reduction cost function, Jyrp; note that

£(r,8) = 2672 + (2 - 37P), (7-36)
which implies
£+(7,8) = 467 - 36, | (7-37)
and
fa(r,B) = 27> - 3. (7-38)
Also,

(2—-Br)A-pr)?

» g(T,,B)—_— TB2(4_2,37'_,3), (7'39)
which implies
-4+ B0 +T(4+ B3+ B(=2+ 7(—4+ B+ B1))))))
g-(7,B) = 2 —opr — PR ; (7-40)
and :
(=141 B+ B(=3+ 27(—4+ B+ P1)))
98(,B8) = 25 - ) : (7-41)
Additionally,
(frh— fhr) = —2(4 +48°7% — B(1 +27)%) (7-42)
and
(fsh — fhg) = 27(1 — 27)? (7-43)

are needed. By substituting Eq. (7-40), Eq. (7-41), Eq. (7-42), and Eq. (7-43) into Eq. (7-4),
gives
4(=1+pr)2(—2+pr(1 + 1))
- 7 =0.

_ 2
T r(l+7)
which is the Benedict-Bordner relationship.

(7-44)

Therefore,

B (7-45)
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7.4 TRANSIENT-VELOCITY-NOISE-REDUCTION COST FUNCTION

To determine which different coefficient relationship are achieved, first consider the transient—
velocity-noise-reduction cost function, Jy,7; note that

f(T7 ;B) = 57 (7_46)
which implies
fr(7,8) =0, (7-47)
and
fa(,8)=1. (7-48)
Also, .
_ =2=-2B(-14+T1)T4+ BT :
R (7-49)
which implies
_ =2B(=1+7) =287 +38%2  2(=2—2B(—1+ 7)1 + B273)
9r(1.8) = Br(—4+ 3+ 2067) B T(—4 + B+ 207)2 (7-50)
_—2-2B(=1+7)7 + B8
Br2(—4+B+2B7)
and
O =2(=14+ )7 +2878 (14 27)(=2 - 2B8(~1+7)T + B%79)
9P = G arpron Br(—4+ B+ 2B7)? (7-51)
_—2-2B(-1+71)+ B8
B2r(—4 + B + 267)
Additionally, ‘
(frh = fhe) = B(—4+ 476 + B) (7-52)
and
(fsh — fhg) = 47 (7-53)

are needed. By substituting Eq. (7-50), Eq. (7-51), Eq. (7-52), and Eq. (7-53) into Eq. (7-4),

gives Br(1+7)
4—-201(1+71
= ~0. (7-54)

Therefore,

2
T(1+7)
which is the Benedict-Bordner relationship. Thus, we have the interesting observation that

either transient cost function leads to the Benedict-Bordner relationship. It is an Interesting

intellectual challenge to determine what cost function leads to either the Kalata or to the
CTWN relationship.

B= (7-55)
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8 CONCLUSION

The performance of an o — 8 and also an o — 3 — « filter for several deterministic motion
models has been analyzed. Closed form solutions have been obtained for the filter performance
statistics. The noise reduction ratio is used as a new means of determining filter lag. Cost
functionals were used as alternate methods for determining the tracking index. This report
presents a general solution to the constant gain tracking filters, which are nothing more than
matrix difference equations. The general solution can be used to compute the covariance matrix
under very general assumptions about the noise.
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APPENDIX A

EVALUATING SUMS

A-1/A-2
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In this appendix, we evaluate the sums that occur in the main body of this report. The

sums are of the form of sums of powers of sines or cosines. We use the complex representation

of the trigonometric form in order to simplify these calculations.

Let y = re’?, then
kad 1

Fly)=)> y"= -y
n=0

if —1 < Re(y) < 1. This can be used to evaluate trigonometric sums by noting
oo
Im(F(y)) = S(r,0) = Zrk sin(k6)
k=0

and

Re(F(y)) =C(r,0) = irk cos(k6)
k=0

The individual sums can be evaluated by applying the definition

s =i ) - i
and
1 1 —rcos() 1 — rcos(6)
C(r,0) = Re(F(y)) = Re <1 - y) T1 2 cos(f) + r? = B8
where |

B=1-2rcos(d) +r°.

For finite sums, define the sum as

F(y,k) = > ¥

Hence, we have

S(r,0) = Im(F(y)) = Im (y

y—1 B

k+1 1) r*+2 sin(k) + rsin(f) — r**1sin(k + 1)0

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)
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and

k+1 k42 k+1 .2
C(r,8) = Re(F(y)) = Re (yy 1) _ r**?cos(k)6 + "+ cos(k +1)0 +rcos(6) —r*

1 B
(A-9)
The first sum can be written as follows:
k-1
S(r,0) = > r"sin(mf) =Im[F(y,k)], (A-10)
m=0
(W*-1)
= Im ,
 (y-1)
- Im [ 7 sin(6) + r**1 sin((k — 1)0) — r* sin(k6)
- I 1 — 2r cos(f) + r2
k-1
C(r,0) = Y r™cos(mf) =RelF(y,k)], (A-11)
m=0
(W~ 1)
= Re ,
(-1

1 — 7cos(6) + 7%+ cos((k — 1)) — r* cos(k8)
1 — 27 cos(f) + r2 ’
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We define S;(r,0) as
k-1
Si(r,0) = Z mr™ sin(mf),

m=0

which equals

9 k-1
= T3 Z r™ sin(md)

m=0

arsin(8) + (a + Bk)rF+ sin((k — 1)8) — (o — B(1 — k))r* sin(k6)

,32

Similarly, we define C1(r,6) as

k-1
Cy(r,0) = Z mr™ cos(mb)

m=0

which equals

= Tamizzor cos(m#b)

(A-12)

(A-13)

(A-14)

(A-15)

/32

—2r2 + (2 — a)r cos(8) + [ + Bk] r*+1cos((k — 1)) — [ — B(1 — k))r* cos(k6) .




NSWCDD/TR-01/68

We define Sy(r, ) as
k-1
Sa(r,0) = Z m2r™ sin(mf)

m=0

which can be evaluated as

—m (r%&(r, 9))

to give

= {(20% + af — 2B)rsin(h)

(202 - 28 + af + 2a8k + K2 52)rF+ sin((k — 1)6)

—(202 = 28 — aff + 208k + % — 2k[° + k*B%)r* sin(k6)} }\ 53

Similarly, we define Cy(r,9) as
k-1
Cy(r,0) = Z m%r™ cos(m#é)
m=0
which can be evaluated as

=m (r%Cl(r, 9))

to give

= {—dor? + (4o — 202 — af3)r cos(6)
+(2a?% — 2B+ aB + 228k + k23%)r* 1 cos((k — 1)6)

—(20% = 2B — aff + 208k + 7 — 2k + K*[%)r* cos(k6) }\B°.

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)
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